博客
关于我
tensorflow的variable scope和name scope
阅读量:271 次
发布时间:2019-03-01

本文共 1512 字,大约阅读时间需要 5 分钟。

在TensorFlow中,变量共享机制通过variable_scopename_scope实现,无需传递引用即可在不同代码块共享变量。这种机制的核心在于tf.get_variable函数,它允许在不同的代码块中创建或检索变量。值得注意的是,tf.get_variabletf.Variable存在显著区别:后者会在每次创建时生成新的变量,并在名称中自动添加后缀以区分不同的实例。

在使用tf.get_variable创建变量或检索现有变量时,name_scope会被忽略。这意味着即使在不同的tf.variable_scope中创建变量,它们的命名空间仍会根据variable_scope的设置进行调整。以下代码示例展示了这一点:

import tensorflow as tfwith tf.name_scope('test_scope'):    test1 = tf.get_variable('test1', [1], dtype=tf.float32)    test2 = tf.Variable(1, name='test2', dtype=tf.float32)    a = tf.add(test1, test2)    print(test1.name)  # test_scope/test1:0    print(test2.name)  # test_scope/test2:0    print(a.name)      # test_scope/Add:0

然而,如果希望通过tf.get_variable创建的变量能够在其他代码块中被访问,需要使用tf.variable_scope。这样可以确保变量在不同代码块中共享:

import tensorflow as tfwith tf.variable_scope('test_scope'):    test1 = tf.get_variable('test1', [1], dtype=tf.float32)    test2 = tf.Variable(1, name='test2', dtype=tf.float32)    a = tf.add(test1, test2)    print(test1.name)  # test_scope/test1:0    print(test2.name)  # test_scope/test2:0    print(a.name)      # test_scope/Add:0

此外,tf.variable_scope还支持reuse参数。当reuse=True时,变量会在同一个scope中被多次使用,而name_scope则会被忽略:

import tensorflow as tfwith tf.variable_scope('share'):    share = tf.get_variable('share_variable', [1])with tf.variable_scope('share', reuse=True):    share_test = tf.get_variable('share_variable', [1])    print(share.name)        # share/share_variable:0    print(share_test.name)   # share/share_variable:0

通过上述方法,可以有效地在TensorFlow中管理变量的共享和命名,确保变量在不同代码块中能够被正确访问和使用。

转载地址:http://vrvx.baihongyu.com/

你可能感兴趣的文章
NIO同步网络编程
查看>>
NIO基于UDP协议的网络编程
查看>>
NIO笔记---上
查看>>
NIO蔚来 面试——IP地址你了解多少?
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP度量指标BELU真的完美么?
查看>>